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zation of a known probability distribution |[1-5].
the statistical description of the source is rarely known precisely. In
some recent papers [2,3] a group of researchers demonstrated both theoreti-
cally and experimentally that a training sequence of independent or ergodic
samples can be used to design near optimal vector quantizers, by using the
sample empirical distribution in place of the unknown input distribution in
a generalized version of Lloyd's Method I [1]. They showed that under some
conditions the quantizer designed for a "long" training sequence approxi-
mates closely the output levels and performance of the optimal quantizer
for the true (unknown® distribution. The same kind of reasoning should
hold for any design algorithm. If the input distribution F is not known,
then we can form an estimate ? based on n observations of the input
signal. As n becomes large, we expect a reasonable estimate to converge to
the true distribution F. Intuitively, then, an optimal quantizer designed
for F ,» and the resulting c¢istortion, should closely approximate those of an
opt1ma1 quantizer for F. In this paper we will establish properties of an
estimator F so that this kind of reasoning will be valid.
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ABSTRACT

In many applications involving quantization the probability distribu-

tion of the input signal is unknown. However, most of the algorithms for
optimal scalar or vector quantization require an explicit distribution
function or probability density. This paper shows that under certain
conditions reasonable quantizer designs can be expected when standard
algorithms are applied to estimates of distribution functions.

I. INTRODUCTION

Much work has been expended in studyin a]gorithms for optimal quanti-
In practice, however,

IT1. DEVELOPMENT

An N-Jevel k-dimensional vector quantizer is a mapping Q: R *JRkwh1ch

assigns to the input vector x an output vector Q(x) chosen from a finite
set of N vectors {y;: y; .eRK, i=1,2,...,N}. The distortion incurred in
quantizing a k dlmenSIOnal random var1ab1e X having a probability distribu-

tion function F is expressed by

Tivaddy

D(Q.F) = fco(ux-o(xnndr(x) (1)

k and where all integrals,

unless noted otherwise, are over le We will take the cost function C (t) B
to be nonnegative, nondecreasing on [0,») and lower semi-continuous. It o
has been shown previously that optimal quantizers minimizing (1) exist for
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Proceedings of the Conference. 85 1 0 11 1 7 9
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all probability distributions F and all k and N [6,7]. This type of distor-
tion function subsumes most of the popular error criteria used in scalar and
vector quantization. When optimal quantizers are being considered, there is
no loss of generality in assuming the "nearest neighbor" assignment rule:
Q(x) is that member of the set which is nearest to x in Euclidean norm, with
ties being broken by an arbitrary preassigned method. This rule will be
adopted throughout the rest of the paper. Thus a quantizer is completely
represented by its set of output vectors.

We will say that a sequence of N-level quantizers {Qn} converges
weakly to the quantizer Q if Q,(x) +~Q(x) at all continuity points x of Q.

Let Fn and F be k-variate probability distribution functions. The
sequence {F } is said to converge weakly to F (written Fn . F) if Fp(x) -~
F(x) at every continuity point x of F. We say that {F,} converges setwise
to F (denoted F =+ F) if

Tim dfF _(x) = dF(x)

n jB n fs "
for every Borel subset B of RR".

The following theorem from [8] and [9] is the main tool used in the

investigation. Here k and N are fixed positive integers.
Theorem 1: Assume that Cy(t) is nonnegative and nondecreasing on [0,).

Suppose that C0(||x-y||) is uniformly integrable with respect to a sequence
of distribution functions {F,} for every y. Let Q, be an optimal N-Tevel
quantizer for F . If either (a) Co(t) is continuous and Fn!L-F; or

(b) Co(t) is lower semicontinuous and Fn-§+F, then every convergent subse-

quence of {Q,} converges weakly to an optimal quantizer for F. Such a sub-
sequence exists unless C,(|[x[|) is constant with F-probability 1. More-
over, D(Qn,Fn) converges to the optimal mean distortion for quantizing F
with N levels.

In Theorem 1, convergence of the sequence of optimal quantizers {Q_}
cannot be asserted. However, {Qn} can be completely partitioned into

convergent subsequences whose limits are optimal quantizers for F.
In Theorem 1, F, can be any sequence of distribution functions. We
are interested in having F, be an estimate F, constructed from n observa-

tions of F. The principal consideration in applying the theorem is in
showing uniform integrability. For sequences of estimates this becomes

lim fco(llx-yll)d?,,(x) = fCo(Hx-yH)dF(x) (2)

for each yele; for almost all training sequences. Before proceeding
further, we make a useful simplification of (2). This equation requires us
to find a set of sample sequences (XI,X s...) On which the integrals

converge for every y in le. What we will be using primarily is the Strong
Law of Large Numbers, which yields the conclusion:

Vin - [ooClix-yl1) df(x) = feoCllx-yI)dF(x) (3)

for almost all training sequences; for each yele. This last equation says
that for a given y, there is a set A(y) of sample sequences (X,,X,s...)

having probability one for which the integrals converge. Obviously, (2)
implies (3). However, it is shown in the Appendix that (3) implies (2).
Thus (2) and (3) are equivalent. Hence if we can show (3), we may use

Theorem 1 to get the results we want. In the following examples, we will
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show how this can be done in a number of situations.
Empirical Distributions. Let F be the unknown k-variate distribution

which we wish to (vector) quantize. If we take n independent samples XysXs
. x , then the empirical distribution function is F (x) =n (#x <X),

where the inequality is taken component by component. This is a s1mp1e
nonparametric estimator which by the Strong Law of Large Numbers converges
setwise to F for almost all sample sequences as n +=. Take CO to be

nonnegative, nondecreasing, nonconstant with respect to F, and lower semi-
continuous. The demonstration of uniform integrability (3) is a simple
application of the Strong Law of Large Numbers. We have for each y

}‘i_':'m fco(“x'y”)d?n(x) = ]CO(”X'YH)dF Np],

provided that the_last integral is finite. According to Theorem 1, then, we
may quantize the F,'s, using any available method that yields an optimal

solution and be assured that the resulting quantizers Q converge weakly to

an optimal quantizer for F. This generalizes the analys1s of [2,3] to other
algorithms besides the extension of Lloyd's Method I. Instead of assuming
the training set to consist of independent samples, we may make an ergodic
(or block ergodic) assumption. This seems to be a useful assumption
regarding information sources. In the development, the Strong Law of Large
Numbers can be replaced by an ergodic theorem [10] and a1l of the
conclusions reached above will remain valid.

For the rest of the paper, we will restrict our attention to distribu-
tions having a density, which we denote by f. Also, except for a portion
of the last example, we will specialize to r-th power distortions, which
have been widely used and studied. In this case, a natural procedure would
be to use some density estimator ?n based on a training sample x],xz,... in
the quantization algorithm. Then (3) becomes

lin_ Jllx-ylI" % ()dx = [ [Ix-yI" F(x)ax (4)

for almost all training sequences; for each yenﬂ‘. This equation says that
if f, and f are to behave in almost the same manner using r-th power

quantizers, then they should have nearly the same r-th moments about
arbitrary points y. Viewed differently, the quantity

Jlx-y 1" #,(x)dx

is an estimator of the r-th moment about y of the density f. Theorem 1
requires this estimator to be strongly consistent, i.e., to converge almost
surely to the true moment of f. In addition, of course, we want the
distribution associated with ? to converge weakly to the distribution of
f. This is satisfied if we have

1 £ = f

nITw n(x) (x) (5)
for almost all x; for almost all training sequences. The discussion thus
far can be summarized by saying that an estimator ?n based on samples can

be used in a quantizer design algorithm in place of f if it satisfies the
strong consistency conditions (4? and (5). The examples below illustrate
this point.

Normal densities. Consider that the density f to be quantized is

univariate normal with unknown mean u and variance 02 >0. Let A(x) denote
the standard normal density. Then we may write f(x) = A#((x-u)/o)/o. Let
X],Xz,... be independent, identically distributed samples from f. Strongly

consistent estimates of the unknown parameters u and o

2 are, respectively,
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the sample mean and variance, ﬁn and 8§. Let ?n be a normal density with

these parameters. This has the strong consistency property (5). Next we
will show (4). By a change of variable

flx-ylr?n(x)dx =f|3nx T -y| " M (x)dx.

Upon applying the c_. inequality [11, p.157] we have

r
A ~ r A r r ~ r
[ox +1, -y[" < c o [" [xI" +e lu -y[ .

By the strong consistency of the estimators,

. Ar r ~ r - rm.r v’

A1_ij(cr|on| |x]" + ¢, 13-y IMx)dx = [(e,o1x]" +c Ju-y| IN(x)dx  wpl.

Ehus (4) go]lows upon invoking a generalized Dominated Convergence Theorem
12, p.89].

The family of normal densities in this example can be replaced with
any class of almost everywhere continuous densities parametrized by location
and/or scale parameters. We may contemplate other instances in which the
unknown parameter is neither a location nor scale parameter, but where the
above analysis can be useful. For instance, the exponent p in the general-

ized Gaussian density f(x) = K exp(-ylxlp) can be varied to fit many
histograms. P

In some situations it might be more appropriate to use a nonparametric
density estimator. A popular type of estimator is the kernel density esti-
mator introduced by Parzen [13] for univariate densities and generalized to

n
multivariate densities by later authors: f,(x) =n”] B h;kK((x-Xi)/hn). The

'|=
kernel K(x) is a probability density function on R¥ and {hy} is a sequence
of numbers decreasing to zero. Nadaraya [14] shows for the univariate case

that if
f(x) is a uniformly continuous density,
K(x) has bounded variation, and (6)

Y exp(-y nhﬁ) converges for every y >0,
n=1

then ?n(x)-vf(x) uniformly with probability one. The extensions of the

result to several dimensions use slightly different sets of assumptions.
We give the result of Moore and Yackel [15] as a typical example. If

f(x) is a uniformly continuous density on RrK,

K(x) is a bounded density on le,

K(x) has bounded variation, and

nhﬁkllog n-s>x as n >,
then ?n(x)-+f(x) uniformly with probability one. X

Assuming that (6) or (7) holds, the distribution of fn converges
setwise to that of f. In addition, K and {hn} should be chosen appropri-

ately so that (4) is satisfied. Two examples are given below. The first
is for scalar quantization and the second for vector quantization.
Compact support. Assume that the unknown density f has compact

(7)

support (which we may take without loss of generality to be contained in
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[-1,1]) and is uniformly continuous on the real line. We wish to quantize
this optimally using a cost function CO which is nonnegative, nondecreasing

and lower semicontinuous, so we also assume that _[Co(lx-yl) K(x)dx < = for

all y. For convenience we take the kernel to be symmetric and unimodal, so
it decreases away from the origin. Consider

y ] x-1
Cnl|x=y|)f (x)dx < 2 Callx-y|) 37— K(F—)dx  wpl.
flx'>a 0 n .fx>a 0 hn (hn)
After a change of variable and simplification, we have

C(|x-y|)¥. (x)dx < 2
]i 0 el n J;> a/hy

It follows that Co(lx-yl) is uniformly integrable with respect to {?n(x)},

wpl. Therefore the kernel estimator is a viable basis for designing a
scalar quantizer for a density with compact support.

Noncompact support. We can extend the previous analysis to multivari-
ate densities with unbounded support if we restrict attention to r-th power
quantizers. A bounded continuous density f(x) whose tails go to 0 as
[[ x]] >« is uniformly continuous, so none of the common densities are
excluded by the assumption (7). Let the cost function be Co(t) = t" where

temporarily r =2p is an even integer. We will also make the natural
assumptions that || x|| has finite (2p)-th moments with respect to both
densities f and K. Our immediate goal is to show (4) for r=2p. By the
c-inequality [ 11, p.157] we have S
n k _{n . S\ 2 x-X;
Iy 1P 80 < e 3 a7t Y (xG)y(@NP (2
P j=1 i=1 hn

Co(lh]x'+1-y|) K(x)dx  wpl.
x| >a

)k, (8)

where the superscript denotes the j-th component of the k-dimensional
vector. Note that the right-hand side converges pointwise as n -+« to
k . .
(3)_,(3))2p
¢ jZ] (x y ) f(x).
If the right-hand side of (8) were integrated, we get k terms, a typical
one of which looks 1ike the following if we ignore the constant cp:

N (3) 4y (3) (j)]zv
Mg =N .Z _[ k[hnx +Xi -y K(x)dx.
i=1 'R
We can use the binomial theorem to expand the last integrand. After
rearranging the sums we get
U0 @) (302 2R 2py 2p-e
m, =n " § (X3V/-y + 7 h
Jsn i=]( i ) 20 ( £ ) n
- n . . z . 2 _t
.;n DT (D) [ kg K(x,dxi'
i=1 R
The terms in the summation from £ =0 to £ =2p-1 are all multiplied by a
power of hn’ which decreases to 0, so that in the limit, the second group

of terms above is zero. Using the Strong Law of Large Numbers on the
first term gives

(x(j)-y(j))zp f(x)dx wpl.
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This is true for all j in (8). Therefore

k . . k . .
e, J £ (OO fmcefo, F OO s e

Since ||x-y||2p?n(x) converges to l[x-yllsz(x) wpl, we may use a general-

ization of the Dominated Convergence Theorem [12, p.89] to conclude that (4)

holds for r=2p. Therefore we have uniform integrability for the cost func-

tion with r an even integer. In general, for any positive r, we can let 2p

?? the sma}lest even integer for which r <2p. Then the above implies that
6, p.252

vim [l x-y[|" (x)dx = [l x-y]|" f(x)ax wpl. (9)
n +o

Thus the kernel estimator ?n can be used to design a quantizer for f.

Another extension of the analysis is possible. Consider a cost func-
tion Co(t) which grows polynomially fast, i.e., there exist a, B and r so
that

0 < Cylt) < at" +8. (10)

Since
lim Colll x=y11) £4(x) = o1l x-y||) f(x) wpl,

(9) and (10) imply, through the generalization of the Dominated Convergence
Theorem [12, p.89], that

Tin [ collix-ylD) Falxdax = [collx-yll) f(x)ax  wpl.

So if C0 is nondecreasing and lower semicontinuous, then Theorem 1 also

appHes, and %n can be used to design a quantizer with the cost function
Cy- Eq. (10) is equivalent to having a A >0 so that

C0(2t) 5.Aco(t) for all t. (1)

This is a useful form for a cost function because (11) and }rco(llxll)dF <o
imply that [Co(llx-yll)dF < = for all vectors y.

As an application of this example, consider Max's algorithm [4] (also
called Lloyd's Method II [1] or the Lloyd-Max algorithm). Some aspects of
this algorithm were mentioned earlier, and we noted that as it has been
described in the literature, the algorithm requires the existence of a
known density function. It does not seem to be readily adapted for
quantizing an empirical distribution function. However, with the approach
outlined in this paper, it is possible to use density estimates as the
input to Max's algorithm and get strongly consistent estimates of the
optimal output levels and breakpoints. Thus the algorithm can be
(indirectly) driven by a training sequence of independent observations.

APPENDIX

In this appendix we show that (3) implies (2). Eq. (3) says that for
a given yeRK , there is a set A(y) of sample sequences (X],XZ,...) having
probability one for which the integrals converge. Since Rr¥ s separable,
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it is possible to find a dense and countable set {yj} for which this
convergence holds with probability one. In fact, for any countable subset
of RK,

A= N Aly.)

=1

is a set of probability one. Now, for a given y in (2), we may find a
finite subset A of the yj's so that

Colllx=ylI) < 1 colllx-y;5ll).

0 y.€A 0 J

This involves constructing a cube around y and picking the yj outside the
cube so that ||x-y || g_llx-yjll for at least one 7e Then

sup Cl 1] x-y || ) dF (x)
n Jlixjj>a O g

iisupf
y.eA N 7|
J
For each yj and each sample sequence in A, the right-hand side can be made
arbitrarily small by appropriately choosing a. Therefore C0(||x-y||) is
uniformly integrable for every y, with respect to every {?n} arising from
the set A. This is equivalent to (2). Therefore, (3) implies (2).

x|[>a Colllx-y511) dFp(x).
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